Эта публикация цитируется в
3 статьях
Статьи
An operator equation characterizing the Laplacian
H. Königa,
V. Milmanb a Mathematisches Seminar, Universität Kiel, Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Аннотация:
The Laplace operator on
$\mathbb R^n$ satisfies the equation
$$
\Delta(fg)(x)=(\Delta f)(x)g(x)+f(x)(\Delta g)(x)+2\langle f'(x),g'(x)\rangle
$$
for all
$f,g\in C^2(\mathbb R^n,\mathbb R)$ and
$x\in\mathbb R^n$. In the paper, an operator equation generalizing this product formula is considered. Suppose $T\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ and $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R^n)$ are operators satisfying the equation
\begin{equation}
T(fg)(x)=(Tf)(x)g(x)+f(x)(Tg)(x)+\langle(Af)(x),(Ag)(x)\rangle
\tag{1}
\end{equation}
for all
$f,g\in C^2(\mathbb R^n,\mathbb R)$ and
$x\in\mathbb R^n$. Assume, in addition, that
$T$ is
$O(n)$-invariant and annihilates the affine functions, and that
$A$ is nondegenerate. Then
$T$ is a multiple of the Laplacian on
$\mathbb R^n$, and
$A$ a multiple of the derivative,
$$
(Tf)(x)=\frac{d(\|x\|)^2}2(\Delta f)(x),\quad (Af)(x)=d(\|x\|)f'(x),
$$
where
$d\in C(\mathbb R_+,\mathbb R)$ is a continuous function. The solutions are also described if
$T$ is not
$O(n)$-invariant or does not annihilate the affine functions. For this, all operators
$(T,A)$ satisfying (1) for scalar operators $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ are determined. The map
$A$, both in the vector and the scalar case, is closely related to
$T$ and there are precisely three different types of solution operators
$(T,A)$.
No continuity or linearity requirement is imposed on
$T$ or
$A$.
Ключевые слова:
Laplace operator, second order Leibniz rule, operator functional equations. Поступила в редакцию: 01.11.2011
Язык публикации: английский