Эта публикация цитируется в
8 статьях
Статьи
The fractional Riesz transform and an exponential potential
B. Jayea,
F. Nazarova,
A. Volbergb a Kent State University, Department of Mathematics, Kent, OH
b Michigan State University, Department of Mathematics, East Lansing, MI
Аннотация:
In this paper we study the
$s$-dimensional Riesz transform of a finite measure
$\mu$ in
$\mathbf R^d$, with
$s\in(d-1,d)$. We show that the boundedness of the Riesz transform of
$\mu$ yields a weak type estimate for the Wolff potential $\mathcal W_{\Phi,s}(\mu)(x)=\int_0^\infty\Phi\bigl(\frac{\mu(B(x,r))}{r^s}\bigl)\frac{dr}r$, where
$\Phi(t)=e^{-1/t^\beta}$ with
$\beta>0$ depending on
$s$ and
$d$. In particular, this weak type estimate implies that
$\mathcal W_{\Phi,s}(\mu)$ is finite
$\mu$-almost everywhere. As an application, we obtain an upper bound for the Calderón–Zygmund capacity
$\gamma_s$ in terms of the non-linear capacity associated to the gauge
$\Phi$. It appears to be the first result of this type for
$s>1$.
Ключевые слова:
Riesz transform, Calderón–Zygmund capacity, nonlinear capacity, Wolff potential, totally lower irregular measure.
Поступила в редакцию: 11.07.2012
Язык публикации: английский