Эта публикация цитируется в
5 статьях
Статьи
Schrödinger equations with time-dependent strong magnetic fields
D. Aiba,
K. Yajima Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Аннотация:
Time dependent
$d$-dimensional Schrödinger equations
$i\partial_tu=H(t)u$,
$H(t)=-(\partial_x-iA(t,x))^2+V(t,x)$ are considered in the Hilbert space
$\mathcal H=L^2(\mathbb R^d)$ of square integrable functions.
$V(t,x)$ and
$A(t,x)$ are assumed to be almost critically singular with respect to the spatial variables
$x\in\mathbb R^d$ both locally and at infinity for the operator
$H(t)$ to be essentially selfadjoint on
$C_0^\infty(\mathbb R^d)$. In particular, when the magnetic fields
$B(t,x)$ produced by
$A(t,x)$ are very strong at infinity,
$V(t,x)$ can explode to the negative infinity like
$-\theta|B(t,x)|-C(|x|^2+1)$ for some
$\theta<1$ and
$C>0$. It is shown that such equations uniquely generate unitary propagators in
$\mathcal H$ under suitable conditions on the size and singularities of the time derivatives of the potentials
$\dot V(t,x)$ and
$\dot A(t,x)$.
Ключевые слова:
unitary propagator, Schrödinger equation, magnetic field, quantum dynamics, Stummel class, Kato class.
Поступила в редакцию: 20.10.2012
Язык публикации: английский