RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2013, том 25, выпуск 3, страницы 3–51 (Mi aa1336)

Эта публикация цитируется в 6 статьях

Обзоры

Sublinear dimension growth in the Kreiss Matrix Theorem

N. Nikolskiab

a University Bordeaux 1, France
b St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia

Аннотация: We discuss a possible sublinear dimension growth in the Kreiss Matrix Theorem bounding the stability constant in terms of the Kreiss resolvent characteristic. Such a growth is proved for matrices having unimodular spectrum and acting on a uniformly convex Banach space. The principal ingredients to results obtained come from geometric properties of eigenvectors, where we use and compare the approaches by C. A. McCarthy–J. Schwartz (1965) and V. I. Gurarii–N. I. Gurarii (1971). The sharpness issue is verified via finite Muckenhoupt bases (by using mostly the approach by M. Spijker, S. Tracogna, and B. Welfert (2003)).

Ключевые слова: power bounded, Kreiss Matrix Theorem, unconditional basis, Muckenhoupt condition.

Поступила в редакцию: 12.12.2012

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2014, 25:3, 361–396

Реферативные базы данных:


© МИАН, 2024