RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2013, том 25, выпуск 4, страницы 139–181 (Mi aa1348)

Эта публикация цитируется в 6 статьях

Статьи

Remarks on Hilbert identities, isometric embeddings, and invariant cubature

H. Nozakia, M. Sawab

a Department of Mathematics, Aichi University of Education, Igaya-cho, Kariya-city 448-8542, Japan
b Graduate School of Information Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan

Аннотация: Victoir (2004) developed a method to construct cubature formulas with various combinatorial objects. Motivated by this, the authors generalize Victoir's method with one more combinatorial object, called regular $t$-wise balanced designs. Many cubature formulas of small indices with few points are provided, which are used to update Shatalov's table (2001) of isometric embeddings in small-dimensional Banach spaces, as well as to improve some classical Hilbert identities. A famous theorem of Bajnok (2007) on Euclidean designs invariant under the Weyl group of Lie type $B$ is extended to all finite irreducible reflection groups. A short proof of the Bajnok theorem is presented in terms of Hilbert identities.

Ключевые слова: cubature formula, Hilbert identity, isometric embedding, Victoir method.

Поступила в редакцию: 05.04.2012

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2014, 25:4, 615–646

Реферативные базы данных:


© МИАН, 2024