Аннотация:
Предлагается новый метод получения абелевых и тауберовых теорем для интегралов вида $\int_0^\infty K(\frac tr)\,d\mu(t)$. Он базируется на использовании свойств предельных множеств мер. Для этого строится вариант теории предельных множеств Азарина для радоновых мер на полуоси $(0,\infty)$. Доказываются абелевы теоремы нового типа, в которых асимптотическое поведение вышеназванных интегралов описывается в терминах предельных множеств мер $\mu$. Используя эти теоремы, а также доказанный в статье усиленный вариант известной леммы Карлемана об аналитическом продолжении, доказывается значительное усиление второй тауберовой теоремы Винера.
Ключевые слова:уточненный порядок Валирона, радонова мера, предельное множество Азарина меры, регулярная мера Азарина, тауберова теорема Винера.