RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2014, том 26, выпуск 3, страницы 131–158 (Mi aa1386)

Статьи

Morse–Novikov theory, Heegaard splittings, and closed orbits of gradient flows

H. Godaa, H. Matsudab, A. Pajitnovc

a Department of Mathematics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
b Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan
c Laboratoire de Mathématiques, Jean-Leray UMR 6629, Université de Nantes, Faculté des Sciences, 2, rue de la Houssinière, 44072, Nantes, Cedex, France

Аннотация: The work of Donaldson and Mark made the structure of the Seiberg–Witten invariant of $3$-manifolds clear. It corresponds to certain torsion type invariants counting flow lines and closed orbits of a gradient flow of a circle-valued Morse map on a $3$-manifold. In the paper, these invariants are studied by using the Morse–Novikov theory and Heegaard splitting for sutured manifolds, and detailed computations are made for knot complements.

Ключевые слова: oriented knot, sutured manifold, Morse map, Novikov complex, half-transversal gradients, Lefschetz zeta function.

Поступила в редакцию: 02.03.2013

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2015, 26:3, 441–461

Реферативные базы данных:


© МИАН, 2024