RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2015, том 27, выпуск 3, страницы 75–94 (Mi aa1436)

Эта публикация цитируется в 2 статьях

Статьи

The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts

A. Volberg

Department of Mathematics, Michigan State University, East Lansing, USA

Аннотация: Once again, a proof of the nonhomogeneous $T1$ theorem is given. This proof consists of three main parts: a construction of a random “dyadic” lattice as in [7,8]; an estimate of matrix coefficients of a Calderón–Zygmund operator with respect to random Haar basis if a smaller Haar support is good like in [8]; a clever averaging trick from [2,5], which involves the averaging over dyadic lattices to decompose an operator into dyadic shifts eliminating the error term that was present in the random geometric construction of [7,8]. Hence, a decomposition is established of nonhomogeneous Calderón–Zygmund operators into dyadic Haar shifts.

Ключевые слова: operators, dyadic shift, $T1$ theorem, nondoubling measure.

Поступила в редакцию: 20.11.2014

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2016, 27:3, 399–413

Реферативные базы данных:


© МИАН, 2024