Эта публикация цитируется в
4 статьях
Статьи
Tate sequences and Fitting ideals of Iwasawa modules
C. Greithera,
M. Kuriharab a Institut für Theoretische Informatik und Mathematik, Universität der Bundeswehr, München, 85577 Neubiberg, Germany
b Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Аннотация:
We consider Abelian CM extensions
$L/k$ of a totally real field
$k$, and we essentially determine the Fitting ideal of the dualized Iwasawa module studied by the second author in the case where only places above
$p$ ramify. In doing so we recover and generalize the results mentioned above. Remarkably, our explicit description of the Fitting ideal, apart from the contribution of the usual Stickelberger element
$\dot\Theta$ at infinity, only depends on the group structure of the Galois group
$\operatorname{Gal}(L/k)$ and not on the specific extension
$L$. From our computation it is then easy to deduce that
$\dot T\dot\Theta$ is not in the Fitting ideal as soon as the
$p$-part of
$\operatorname{Gal}(L/k)$ is not cyclic. We need a lot of technical preparations: resolutions of the trivial module
$\mathbb Z$ over a group ring, discussion of the minors of certain big matrices that arise in this context, and auxiliary results about the behavior of Fitting ideals in short exact sequences.
Ключевые слова:
Tate sequences, class groups, cohomology, totally real fields, CM-fields.
Поступила в редакцию: 15.06.2015
Язык публикации: английский