RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2018, том 30, выпуск 3, страницы 93–111 (Mi aa1597)

Статьи

A functional model for the Fourier–Plancherel operator truncated to the positive semiaxis

V. Katsnelson

Department of Mathematics, The Weizmann Institute, 76100, Rehovot, Israel

Аннотация: The truncated Fourier operator $\mathscr F_{\mathbb R^+}$,
\begin{equation*} (\mathscr F_{\mathbb R^+}x)(t)=\frac1{\sqrt{2\pi}}\int_{\mathbb R^+}x(\xi)e^{it\xi}\,d\xi,\quad t\in\mathbb{R^+}, \end{equation*}
is studied. The operator $\mathscr F_{\mathbb R^+}$ is viewed as an operator acting in the space $L^2(\mathbb R^+)$. A functional model for the operator $\mathscr F_{\mathbb R^+}$ is constructed. This functional model is the operator of multiplication by an appropriate ($2\times2$)-matrix function acting in the space $L^2(\mathbb R^+)\oplus L^2(\mathbb R^+)$. Using this functional model, the spectrum of the operator $\mathscr F_{\mathbb R^+}$ is found. The resolvent of the operator $\mathscr F_{\mathbb R^+}$ is estimated near its spectrum.

Ключевые слова: truncated Fourier–Plancherel operator, functional model for a linear operator.

Поступила в редакцию: 27.10.2017

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 30:3, 457–469

Реферативные базы данных:


© МИАН, 2025