RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2018, том 30, выпуск 5, страницы 1–56 (Mi aa1613)

Эта публикация цитируется в 11 статьях

Статьи

Spectral theory of rank one perturbations of normal compact operators

A. D. Baranovab

a Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
b National Research University Higher School of Economics, St. Petersburg, Russia

Аннотация: A functional model is constructed for rank one perturbations of compact normal operators that act in a certain Hilbert spaces of entire functions generalizing the de Branges spaces. By using this model, completeness and spectral synthesis problems are studied for such perturbations. Previously, the spectral theory of rank one perturbations was developed in the selfadjoint case by D. Yakubovich and the author. In the present paper, most of known results in the area are extended and simplified significantly. Also, an ordering theorem for invariant subspaces with common spectral part is proved. This result is new even for rank one perturbations of compact selfadjoint operators.

Ключевые слова: spectral synthesis, nonvanishing moments, domination, completeness, spectrum, invariant subspace, functional model.

MSC: Primary 47B15; Secondary 47A55

Поступила в редакцию: 15.03.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 30:5, 761–802

Реферативные базы данных:


© МИАН, 2024