Эта публикация цитируется в
15 статьях
Статьи
On the motivic commutative ring spectrum $\mathbf{BO}$
I. Panina,
C. Walterb a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b Laboratoire J. A. Dieudonné, UMR 6621 du CNRS, Université de Nice — Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 02, France
Аннотация:
An algebraic commutative ring
$T$-spectrum
$\mathbf{BO}$ is constructed such that it is stably fibrant,
$(8,4)$-periodic, and on
$\mathcal Sm\mathcal Op/S$ the cohomology theory
$(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian
$K$-theory functor
$(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence
$\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic
$K$-theory is used to equip
$\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is
$\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory
$\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$
KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y)
$$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on
$\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space
$\langle-1\rangle$.
Ключевые слова:
Hermitian
$K$-theory, Grothendieck–Witt groups, symplectic orientation.
MSC: 14C15 Поступила в редакцию: 24.04.2018
Язык публикации: английский