RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 2, страницы 174–188 (Mi aa1642)

Статьи

Bounded point derivations on certain function spaces

J. E. Brennan

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Аннотация: Let $ X$ be a compact nowhere dense subset of the complex plane $ \mathbb{C}$, and let $ dA$ denote two-dimensional Lebesgue (or area) measure in $ \mathbb{C}$. Denote by $ \mathcal {R}(X)$ the set of all rational functions having no poles on $ X$, and by $ R^p(X)$ the closure of $ \mathcal {R}(X)$ in $ L^p(X,dA)$ whenever $ 1\leq p<\infty $. The purpose of this paper is to study the relationship between bounded derivations on $ R^p(X)$ and the existence of approximate derivatives provided $ 2<p<\infty $, and to draw attention to an anomaly that occurs when $ p=2$.

Ключевые слова: point derivation, approximate derivative, monogeneity, capacity.

MSC: Primary 41A15; Secondary 30H10

Поступила в редакцию: 13.11.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 31:2, 313–323

Реферативные базы данных:


© МИАН, 2024