RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 3, страницы 36–54 (Mi aa1651)

Обзоры

On the defect of compactness in Sobolev embeddings on Riemannian manifolds

C. Tintarev

Sankt Olofsgatan 66B, 75330 Uppsala, Sweden

Аннотация: The defect of compactness for an embedding $E\hookrightarrow F$ of two Banach spaces is the difference between a weakly convergent sequence in $E$ and its weak limit, taken modulo terms vanishing in $F$. We discuss the structure of the defect of compactness for (noncompact) Sobolev embeddings on manifolds, giving a brief outline of the theory based on isometry groups, followed by a summary of recent studies of the structure of bounded sequences without invariance assumptions.

Ключевые слова: concentration compactness, profile decomposition, weak convergence, Sobolev spaces on manifolds.

MSC: 46E35, 46B50, 46N20, 54D30, 43A99, 58E99

Поступила в редакцию: 30.08.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2020, 31:3, 421–434

Реферативные базы данных:


© МИАН, 2024