RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 3, страницы 136–153 (Mi aa1655)

Эта публикация цитируется в 2 статьях

Статьи

Sharp estimates for the gradient of solutions to the heat equation

G. Kresina, V. Maz'yabcd

a Department of Mathematics Ariel University, Ariel 40700, Israel
b RUDN University, 6 Miklukho-Maklay St., 117198, Moscow, Russia
c Department of Mathematical Sciences, University of Liverpool, M&O Building, Liverpool, L69 3BX, UK
d Department of Mathematics, Linköping University, SE-58183 Linköping, Sweden

Аннотация: Various sharp pointwise estimates for the gradient of solutions to the heat equation are obtained. The Dirichlet and Neumann conditions are prescribed on the boundary of a half-space. All data belong to the Lebesgue space $L^p$. Derivation of the coefficients is based on solving certain optimization problems with respect to a vector parameter inside of an integral over the unit sphere.

Ключевые слова: heat equation, sharp pointwise estimates for the gradient, first and second boundary value problems.

MSC: Primary 35K05; Secondary 26D20

Поступила в редакцию: 06.06.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2020, 31:3, 495–507

Реферативные базы данных:


© МИАН, 2024