RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 4, страницы 1–15 (Mi aa1660)

Эта публикация цитируется в 1 статье

Статьи

Orders that are étale-locally isomorphic

E. Bayer-Fluckigera, U. A. Firstb, M. Huruguena

a Department of Mathematics, École Polytechnique Fédérale de Lausanne
b Department of Mathematics, University of Haifa

Аннотация: Let $R$ be a semilocal Dedekind domain with fraction field $F$. It is shown that two hereditary $R$-orders in central simple $F$-algebras that become isomorphic after tensoring with $F$ and with some faithfully flat étale $R$-algebra are isomorphic. On the other hand, this fails for hereditary orders with involution. The latter stands in contrast to a result of the first two authors, who proved this statement for Hermitian forms over hereditary $R$-orders with involution.
The results can be restated by means of étale cohomology and can be viewed as variations of the Grothendieck–Serre conjecture on principal homogeneous spaces of reductive group schemes. The relationship with Bruhat–Tits theory is also discussed.

Ключевые слова: hereditary order, maximal order, Dedekind domain, group scheme, reductive group, involution, central simple algebra.

MSC: 16H10, 16W10, 11E57, 11E72

Поступила в редакцию: 09.07.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2020, 31:4, 573–584

Реферативные базы данных:


© МИАН, 2024