RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2021, том 33, выпуск 5, страницы 153–175 (Mi aa1780)

Статьи

Limit behavior of Weyl coefficients

R. Pruckner, H. Woracek

Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstrasse 8-10/101, 1040 Wien, Austria

Аннотация: The sets of radial or nontangential limit points towards $i\infty$ of a Nevanlinna function $q$ are studied. Given a nonempty, closed, and connected subset $\mathcal{L}$ of $\overline{\mathbb C_+}$, a Hamiltonian $H$ is constructed explicitly such that the radial and outer angular cluster sets towards $i\infty$ of the Weyl coefficient $q_H$ are both equal to $\mathcal{L}$. The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.

Ключевые слова: Weyl coefficient, canonical system, cluster set, Nevanlinna function.

Поступила в редакцию: 11.06.2019

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2022, 33:5, 849–865


© МИАН, 2024