Статьи
Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport
N. Nikolski Institut de Mathématiques de Bordeaux, France
Аннотация:
A sign interlacing phenomenon for Bessel sequences, frames, and Riesz bases
$ (u_{k})$ in
$ L^{2}$ spaces over the spaces of homogeneous type
$ \Omega =(\Omega, \rho, \mu )$ satisfying the doubling/halving conditions is studied. Under some relations among three basic metric-measure parameters of
$ \Omega $, we obtain asymptotics for the mass moving norms
$ \| u_{k}\| _{KR}$ in the sense of Kantorovich–Rubinstein, as well as for the singular numbers of the Lipschitz and Hajlasz–Sobolev embeddings. Our main observation shows that, quantitatively, the rate of convergence
$ \| u_{k}\| _{KR}\to 0$ mostly depends on the Bernstein–Kolmogorov
$n$-widths of a certain compact set of Lipschitz functions, and the widths themselves mostly depend on the interplay between geometric doubling and measure doubling/halving numerical parameters. The “more homogeneous” is the space, the sharper are the results.
Ключевые слова:
sign interlacing, Kantorovich–Rubinstein (Wasserstein) metrics, Riesz bases, frames, Bessel sequences, geometric doubling condition, measure halving and doubling conditions,
$ p$-Schatten classes, dyadic cubes, Haar-like functions, Hajlasz–Sobolev spaces, Hadamard matrix.
Поступила в редакцию: 14.12.2021
Язык публикации: английский