Статьи
Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$
K. J. Ciosmakab a University of Oxford, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, United Kingdom
b University of Oxford, St John's College, St Giles', Oxford OX1 3JP, United Kingdom
Аннотация:
Let
$A$ be a finite-dimensional, commutative algebra over
$\mathbb{R}$ or
$\mathbb{C}$. We extend the notion of
$A$-differentiable functions on
$A$ and develop a theory of
$A$-differentiable functions on finitely generated
$A$-modules. Let
$U$ be an open, bounded and convex subset of such a module. We give an explicit formula for
$A$-differentiable functions on
$U$ of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when
$A$ is singly generated and the module is arbitrary and in the case when
$A$ is arbitrary and the module is free. We prove that certain components of
$A$-differentiable function are of higher differentiability than the function itself.
Let
$\mathsf{M}$ be a constant, square matrix. Using the formula mentioned above, we find a complete description of solutions of the equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$.
We formulate the boundary value problem for generalized Laplace equations $\mathsf{M}\,\nabla^2 v=\nabla^2v \mathsf{M}^{\mathsf{T}}$ and prove that for given boundary data there exists a unique solution, for which we provide a formula.
Ключевые слова:
differentiable functions on algebras, generalised analytic functions, generalised Laplace equations, Banach algebra of $A$-differentiable functions. Поступила в редакцию: 10.01.2020
Язык публикации: английский