RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 2, страницы 185–230 (Mi aa1805)

Статьи

Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$

K. J. Ciosmakab

a University of Oxford, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, United Kingdom
b University of Oxford, St John's College, St Giles', Oxford OX1 3JP, United Kingdom

Аннотация: Let $A$ be a finite-dimensional, commutative algebra over $\mathbb{R}$ or $\mathbb{C}$. We extend the notion of $A$-differentiable functions on $A$ and develop a theory of $A$-differentiable functions on finitely generated $A$-modules. Let $U$ be an open, bounded and convex subset of such a module. We give an explicit formula for $A$-differentiable functions on $U$ of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when $A$ is singly generated and the module is arbitrary and in the case when $A$ is arbitrary and the module is free. We prove that certain components of $A$-differentiable function are of higher differentiability than the function itself.
Let $\mathsf{M}$ be a constant, square matrix. Using the formula mentioned above, we find a complete description of solutions of the equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$.
We formulate the boundary value problem for generalized Laplace equations $\mathsf{M}\,\nabla^2 v=\nabla^2v \mathsf{M}^{\mathsf{T}}$ and prove that for given boundary data there exists a unique solution, for which we provide a formula.

Ключевые слова: differentiable functions on algebras, generalised analytic functions, generalised Laplace equations, Banach algebra of $A$-differentiable functions.

Поступила в редакцию: 10.01.2020

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:2, 271–303

Реферативные базы данных:


© МИАН, 2024