Статьи
Hilbert points in Hardy spaces
O. F. Breviga,
J. Ortega-Cerdáb,
K. Seipc a Department of Mathematics, University of Oslo, 0851 Oslo, Norway
b Department de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
c Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
Аннотация:
A Hilbert point in
$H^p(\mathbb{T}^d)$, for
$d\geq1$ and
$1\leq p \leq \infty$, is a nontrivial function
$\varphi$ in
$H^p(\mathbb{T}^d)$ such that $\| \varphi \|_{H^p(\mathbb{T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb{T}^d)}$ whenever
$f$ is in
$H^p(\mathbb{T}^d)$ and orthogonal to
$\varphi$ in the usual
$L^2$ sense. When
$p\neq 2$,
$\varphi$ is a Hilbert point in
$H^p(\mathbb{T})$ if and only if
$\varphi$ is a nonzero multiple of an inner function. An inner function on
$\mathbb{T}^d$ is a Hilbert point in any of the spaces
$H^p(\mathbb{T}^d)$, but there are other Hilbert points as well when
$d\geq 2$. We investigate the case of
$1$-homogeneous polynomials in depth and obtain as a byproduct a new proof of the sharp Khinchin inequality for Steinhaus variables in the range
$2<p<\infty$. We also study briefly the dynamics of a certain nonlinear projection operator that characterizes Hilbert points as its fixed points. We exhibit an example of a function
$\varphi$ that is a Hilbert point in
$H^p(\mathbb{T}^3)$ for
$p=2, 4$, but not for any other
$p$; this is verified rigorously for
$p>4$ but only numerically for
$1\leq p<4$.
Ключевые слова:
Hardy spaces, inner functions, Hilbert points,
$1$-homogeneous polynomials, Khinchin inequality for Steinhaus variables.
Поступила в редакцию: 21.06.2021
Язык публикации: английский