RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 252–275 (Mi aa1818)

Статьи

Free boundary problems via Sakai's theorem

D. Vardakisa, A. Volbergab

a Department of Mathematics, Michigan State University, East Lansing, MI. 48823
b Hausdorff Center for Mathematics, Bonn, Germany

Аннотация: A Schwarz function on an open domain $\Omega$ is a holomorphic function satisfying $S(\zeta)=\overline{\zeta}$ on $\Gamma$, which is part of the boundary of $\Omega$. Sakai in 1991 gave a complete characterization of the boundary of a domain admitting a Schwarz function. In fact, if $\Omega$ is simply connected and $\Gamma=\partial \Omega\cap D(\zeta,r)$, then $\Gamma$ has to be regular real analytic. This paper is an attempt to describe $\Gamma$ when the boundary condition is slightly relaxed. In particular, three different scenarios over a simply connected domain $\Omega$ are treated: when $f_1(\zeta)=\overline{\zeta}f_2(\zeta)$ on $\Gamma$ with $f_1,f_2$ holomorphic and continuous up to the boundary, when $\mathcal{U}/\mathcal{V}$ equals certain real analytic function on $\Gamma$ with $\mathcal{U},\mathcal{V}$ positive and harmonic on $\Omega$ and vanishing on $\Gamma$, and when $S(\zeta)=\Phi(\zeta,\overline{\zeta})$ on $\Gamma$ with $\Phi$ a holomorphic function of two variables. It turns out that the boundary piece $\Gamma$ can be, respectively, anything from $C^\infty$ to merely $C^1$, regular except finitely many points, or regular except for a measure zero set.

Ключевые слова: free boundary problems, Schwarz function, real analytic curves, pseudocontinuation, positive harmonic functions, boundary Harnack principle, Nevanlinna domains.

Поступила в редакцию: 01.06.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:3, 497–514


© МИАН, 2024