RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2023, том 35, выпуск 1, страницы 204–225 (Mi aa1851)

Эта публикация цитируется в 1 статье

Статьи

Solutions of Gross–Pitaevskii equation with periodic potential in dimension three

Yu. Karpeshinaa, Seonguk Kimb, R. Shterenberga

a Department of Mathematics, Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294
b Division of Natural Science, Applied Science, and Mathematics, Defiance College, Defiance, 43512, Ohio, United States

Аннотация: Quasiperiodic solutions of the Gross–Pitaevskii equation with a periodic potential in dimension three are studied. It is proved that there is an extensive “nonresonant” set ${\mathcal G}\subset \mathbb{R}^3$ such that for every $\vec k\in \mathcal G$ there is a solution asymptotically close to a plane wave $Ae^{i\langle{ \vec{k}, \vec{x} }\rangle}$ as $|\vec k|\to \infty $, given $A$ is sufficiently small.

Ключевые слова: Bose–Einstein condensate, quasiperiodic solution, quasimomentum, plane wave.

Поступила в редакцию: 24.09.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2024, 35:1, 153–169


© МИАН, 2024