Аннотация:
This note is devoted to the study of complete nonselfadjointness for all maximally dissipative extensions of a Schrödinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. It is shown that all maximally dissipative extensions that preserve the differential expression are completely nonselfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. A characterisation of these extensions and the corresponding subspaces is given, accompanied by a specific example.