RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2024, том 36, выпуск 3, страницы 22–44 (Mi aa1916)

Статьи

Remark on the ill-posedness of the hyperbolic Prandtl system

Zhonger Wua, Ping Zhangbca

a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
b Hua Loo-Keng Key Laboratory of Mathematics, the Chinese Academy of Sciences, Beijing 100190, China
c School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Аннотация: The paper is devoted to the ill-posedness of the linearized hyperbolic Prandtl system around a shear flow. As in [7] for the classical Prandtl system, the hyperbolic Prandtl system with initial data that does not satisfy monotonicity condition is ill posed at least in a Sobolev space. As a byproduct, we deduce that the optimal Gevrey index for the well-poseness of the hyperbolic Prandtl system is 2.

Ключевые слова: Hyperbolic Prandtl system, shear flow, ill-posedness, Sobolev spaces, optimal Gevrey index.

Поступила в редакцию: 29.01.2024

Язык публикации: английский



© МИАН, 2024