Аннотация:
Для одномерного дискретного оператора Шредингера с убывающим потенциалом изучается точечный спектр, лежащий на непрерывном. Последний заполняет отрезок $[-2,2]$. Хорошо известно, что в случае убывания потенциала быстрее кулоновского в интервале $(-2,2)$ собственные значения отсутствуют. В § 2 построены примеры потенциалов, показывающие, что, как и в непрерывном случае, при убывании потенциала “чуть” медленнее кулоновского возможно появление плотного точечного спектра на $[-2,2]$. § 3 посвящен изучению возможности появления собственного значения $\lambda\in(-2,2)$ в зависимости от убывания потенциала и расстояния от $\lambda$ до границы непрерывного спектра. В частности, получено весьма точное условие отсутствия собственных значений в открытом интервале $(-2,2)$.