RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 1993, том 5, выпуск 3, страницы 77–99 (Mi aa388)

Статьи

Rapidly growing functions with empty spectrum and a gap in the support

A. L. Volberg

Michigan State University

Аннотация: The theorem of the brothers Riesz says that certain bounded measures on $\mathbb R$ and Lebesgue measure have the same null sets. Over the years this theorem has been extended in a variety of ways. Recently, F. Forelli [F], showed that it holds for measures whose variation does not grow too fast. Here it is shown that the result of Forelli is sharp. More precisely, it is shown that for any sufficiently regular function $V\colon[0,+\infty)\to[1,+\infty)$ such $\int_0^\infty\frac{\log V(x)}{1+x^2}dx=\infty$ there exists a measure $\mu$, $\mathrm{Var}_{[-x,x]}|\mu|\le V(x)$, which has empty spectrum and which is not mutually absolutely continuous with Lebesgue measure.

Ключевые слова: Theorem of the brothers Riesz, Fourier–Carleman transform.

Поступила в редакцию: 03.09.1992

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 1994, 5:3, 485–503

Реферативные базы данных:


© МИАН, 2024