Эта публикация цитируется в
6 статьях
Статьи
Generalized Fesenko reciprocity map
K. I. Ikedaa,
E. Serbestb a Department of Mathematics, Istanbul Bilgi University, Istanbul, Turkey
b Gümüş Gala Mahallesi, Istanbul, Turkey
Аннотация:
The paper is a natural continuation and generalization of the works of Fesenko and of the authors.
Fesenko's theory is carried over to infinite
$APF$-Galois extensions
$L$ over a local field
$K$ with a finite residue-class field
$\kappa_K$ of
$q=p^f$ elements, satisfying
$\mathbf{\mu}_p(K^\mathrm{sep})\subset K$ and
$K\subset L\subset K_{\varphi^d}$, where the residue-class degree
$[\kappa_L:\kappa_K]$ is equal to
$d$. More precisely, for such extensions
$L/K$ and a fixed Lubin–Tate splitting
$\varphi$ over
$K$, a 1-cocycle
$$
\mathbf{\Phi}_{L/K}^{(\varphi)}\colon\mathrm{Gal}(L/K)\to K^\times/N_{L_0/K}L_0^\times\times U_{\widetilde{\mathbb X}(L/K)}^\diamond/Y_{L/L_0}
$$
where
$L_0=L\cap K^{nr}$, is constructed, and its functorial and ramification-theoretic
properties are studied. The case of
$d=1$ recovers the theory of Fesenko.
Ключевые слова:
local fields, higher-ramification theory,
$APF$-extensions Fontaine–Wintenberger field of norms, Fesenko reciprocity map, generalized Fesenko reciprocity map, non-abelian local class field theory.
MSC: 11S37 Поступила в редакцию: 20.10.2007
Язык публикации: английский