Статьи
The spectrum of some compressions of unilateral shifts
S. Duberneta,
J. Esterleb a Professeur de CPES, Epinay sur Seine, France
b Université Bordeaux 1, Talence, France
Аннотация:
Let
$E$ be a star-shaped Banach space of analytic functions on the open unit disc
$\mathbb D$. We assume that the unilateral shift
$S\colon z\to zf$ and the backward shift
$T\colon f\to\frac{f-f(0)}{z}$ are bounded on
$E$ and that their spectrum is the closed unit disc.
Let
$M$ be a closed
$z$-invariant subspace of
$E$ such that
$\dim(M/zM)=1$, and let
$g\in M$. The main result of the paper shows that if
$g$ has an analytic extension to
$\mathbb D\cup D(\zeta,r)$ for some
$r>0$, with
$g(\zeta)\ne 0$, and if
$S$ and
$T$ satisfy the “nonquasianalytic condition”
$$
\sum_{n\ge 0}\frac{\log\| S^n\|+\log\| T^n\|}{ 1+n^2}<+\infty,
$$
then
$\zeta$ does not belong to the spectrum of the compression
$S_M\colon f+M\to zf+M$ of the unilateral shift to the quotient space
$E/M$. This shows in particular that
$\operatorname{Spec}(S_M)=\{1\}$ for some
$z$-invariant subspaces
$M$ of weighted Hardy spaces constructed by N. K. Nikol'skiĭ in the seventies by using the Keldysh method.
Ключевые слова:
Unilateral shift, nonquasianalyticty condition, spectrum.
MSC: 47B37 Поступила в редакцию: 12.08.2006
Язык публикации: английский