RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2004, том 16, выпуск 1, страницы 207–238 (Mi aa594)

Эта публикация цитируется в 30 статьях

Статьи

Spectral shift function in strong magnetic fields

V. Bruneaua, A. Pushitskib, G. Raikovc

a Mathematiques Appliquées de Bordeaux, Université Bordeaux I, Talence, France
b Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom
c Departamento de Matemáticas, Universidad de Chile, Santiago, Chile

Аннотация: We consider the three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$, and with continuous electric potential $V\in L^1(\mathbb R^3)$ that admits certain power-like estimates at infinity. The asymptotic behavior as $b\to\infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $\mathcal E=\mathcal{E}b+\lambda$, $\mathcal E>0$ and $\lambda\in\mathbb R$ being fixed. Two asymptotic regimes are distinguished. In the first one, called asymptotics far from the Landau levels, we pick $\mathcal E/2\notin\mathbb Z$ and $\lambda\in\mathbb R$; then the main term is always of order $\sqrt b$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose $\mathcal E=2q_0$, $q_o\in\mathbb Z_+$, and $\lambda\ne0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt b$ for different $\lambda$.

УДК: Schr\"odinger operator, spectral shift function, asymptotics.

Поступила в редакцию: 27.10.2003

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2005, 16:1, 181–209

Реферативные базы данных:


© МИАН, 2024