Эта публикация цитируется в
12 статьях
Статьи
Novikov homology, twisted Alexander polynomials, and Thurston cones
A. V. Pajitnov Laboratoire Mathématiques Jean Leray, Université de Nantes, Faculté des Sciences, Nantes
Аннотация:
Let
$M$ be a connected CW complex, and let
$G$ denote the fundamental group of
$M$. Let
$\pi$ be an epimorphism of
$G$ onto a free finitely generated Abelian group
$H$, let
$\xi\colon H\to\mathbf R$ be a homomorphism, and let
$\rho$ be an antihomomorphism of
$G$ to the group
$\operatorname{GL}(V)$ of automorphisms of a free finitely generated
$R$-module
$V$ (where
$R$ is a commutative factorial ring).
To these data, we associate the twisted Novikov homology of
$M$, which is a module over the Novikov completion of the ring
$\Lambda=R[H]$. The twisted Novikov homology provides the lower bounds for the number of zeros of any Morse form whose cohomology class equals
$\xi\circ\pi$. This generalizes a result by H. Goda and the author.
In the case when
$M$ is a compact connected 3-manifold with zero Euler characteristic, we obtain a criterion for the vanishing of the twisted Novikov homology of
$M$ in terms of the corresponding twisted Alexander polynomial of the group
$G$.
We discuss the relationship of the twisted Novikov homology with the Thurston norm on the 1-cohomology of
$M$.
The electronic preprint of this work (2004) is available from the ArXiv.
MSC: 57Rxx Поступила в редакцию: 22.02.2006
Язык публикации: английский