RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2011, том 12, выпуск 2, страницы 38–52 (Mi adm127)

RESEARCH ARTICLE

On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point

Ivan Chuchman

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine

Аннотация: In this paper we study the semigroup $\mathfrak{IC}(I,[a])$ ($\mathfrak{IO}(I,[a])$) of closed (open) connected partial homeomorphisms of the unit interval $I$ with a fixed point $a\in I$. We describe left and right ideals of $\mathfrak{IC}(I,[0])$ and the Green's relations on $\mathfrak{IC}(I,[0])$. We show that the semigroup $\mathfrak{IC}(I,[0])$ is bisimple and every non-trivial congruence on $\mathfrak{IC}(I,[0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{IC}(I,[0])$ is isomorphic to the semigroup $\mathfrak{IO}(I,[0])$ and describe the structure of a semigroup $\mathfrak{II}(I,[0])=\mathfrak{IC}(I,[0])\sqcup\mathfrak{IO}(I,[0])$. As a corollary we get structures of semigroups $\mathfrak{IC}(I,[a])$ and $\mathfrak{IO}(I,[a])$ for an interior point $a\in I$.

Ключевые слова: Semigroup of bijective partial transformations, symmetric inverse semigroup, semigroup of homeomorphisms, group congruence, bisimple semigroup.

MSC: 20M20,54H15, 20M18

Поступила в редакцию: 22.09.2011
Исправленный вариант: 22.09.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024