Эта публикация цитируется в
8 статьях
RESEARCH ARTICLE
Algebra in superextensions of groups, II: cancelativity and centers
Taras Banakha,
Volodymyr Gavrylkivb a Ivan Franko National University of Lviv,
Universytetska 1, 79000, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Аннотация:
Given a countable group
$X$ we study the algebraic structure of its superextension
$\lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on
$X$ endowed with the operation
$$
\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}
$$
that extends the group operation of
$X$. We show that the subsemigroup
$\lambda^\circ(X)$ of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of
$\lambda(X)$ coincides with the subsemigroup
$\lambda^\bullet(X)$ of all maximal linked systems with finite support. This result is applied to show that the algebraic center of
$\lambda(X)$ coincides with the algebraic center of
$X$ provide
$X$ is countably infinite. On the other hand, for finite groups
$X$ of order
$3\le|X|\le5$ the algebraic center of
$\lambda(X)$ is strictly larger than the algebraic center of
$X$.
Ключевые слова:
Superextension, right-topological semigroup, cancelable element, topological center, algebraic center.
MSC: 20M99,
54B20 Поступила в редакцию: 14.02.2008
Исправленный вариант: 25.08.2008
Язык публикации: английский