RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2007, выпуск 1, страницы 13–23 (Mi adm184)

Эта публикация цитируется в 5 статьях

RESEARCH ARTICLE

On $H$-closed topological semigroups and semilattices

Ivan Chuchman, Oleg Gutik

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine

Аннотация: In this paper, we show that if $S$ is an $H$-closed topological semigroup and $e$ is an idempotent of $S$, then $eSe$ is an $H$-closed topological semigroup. We give sufficient conditions on a linearly ordered topological semilattice to be $H$-closed. Also we prove that any $H$-closed locally compact topological semilattice and any $H$-closed topological weakly $U$-semilattice contain minimal idempotents. An example of a countably compact topological semilattice whose topological space is $H$-closed is constructed.

Ключевые слова: Topological semigroup, $H$-closed topological semigroup, absolutely $H$-closed topological semigroup, topological semilattice, linearly ordered semilattice, $H$-closed topological semilattice, absolutely $H$-closed topological semilattice.

MSC: 06A12, 06F30; 22A15, 22A26, 54H12

Поступила в редакцию: 09.04.2007
Исправленный вариант: 29.05.2007

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024