Эта публикация цитируется в
4 статьях
RESEARCH ARTICLE
Gorenstein matrices
M. A. Dokuchaeva,
V. V. Kirichenkob,
A. V. Zelenskyb,
V. N. Zhuravlevb a Departamento de Matematica Univ. de SãoPaulo, Caixa Postal 66281, São Paulo, SP,
05315–970 — Brazil
b Faculty of Mechanics and Mathematics,
Kiev National, Taras Shevchenko Univ.,
Vladimirskaya Str., 64, 01033 Kiev, Ukraine
Аннотация:
Let
$A=(a_{ij})$ be an integral matrix. We say that
$A$ is
$(0, 1, 2)$-matrix if
$a_{ij}\in\{0,1,2\}$. There exists the Gorenstein
$(0, 1, 2)$-matrix for any permutation
$\sigma$ on the set
$\{1,\dots,n\}$ without fixed elements. For every positive integer
$n$ there exists the Gorenstein cyclic
$(0, 1, 2)$-matrix
$A_{n}$ such
that
$inx\,A_{n}=2$.
If a Latin square
${\mathcal L}_{n}$ with a first row and first column
$(0,1,\ldots,n-1)$ is an exponent matrix, then
$n=2^{m}$ and
${\mathcal L}_{n}$ is the Cayley table of a direct
product of
$m$ copies of the cyclic group of order 2. Conversely, the Cayley table
${{\mathcal E}}_{m}$ of the elementary abelian group
$G_{m}=(2)\times\ldots\times(2)$ of order
$2^{m}$ is a Latin square and a Gorenstein symmetric matrix with first row
$(0,1,\ldots,2^{m}-1)$ and
$$
\sigma({{\mathcal E}}_{m})=\begin{pmatrix}1&2&3&\ldots &2^{m}-1&2^{m}\\
2^{m}&2^{m}-1&2^{m}-2&\ldots & 2&1\end{pmatrix}.
$$
Ключевые слова:
exponent matrix; Gorenstein tiled order, Gorenstein matrix, admissible quiver, doubly stochastic matrix.
MSC: 16P40,
16G10 Поступила в редакцию: 17.02.2005
Исправленный вариант: 29.03.2005
Язык публикации: английский