RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 1, страницы 151–165 (Mi adm296)

Эта публикация цитируется в 10 статьях

RESEARCH ARTICLE

Diagonalizability theorems for matrices over rings with finite stable range

Bogdan Zabavsky

Ivan Franko National University of L'viv

Аннотация: We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to “almost” diagonal matrix by elementary transformations.

Ключевые слова: finite stable range, elementary divisor ring, Hermite ring, ring with elementary reduction of matrices, Bezout ring, minimal prime spectrum.

Поступила в редакцию: 11.06.2004
Исправленный вариант: 21.03.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024