Эта публикация цитируется в
4 статьях
RESEARCH ARTICLE
Correct classes of modules
Robert Wisbauer Department of Mathematics Heinrich Heine University
40225 Düsseldorf, Germany
Аннотация:
For a ring
$R$, call a class
$\mathcal{C}$ of
$R$-modules
(pure-) mono-correct if for any
$M,N\in\mathcal {C}$ the existence of (pure) monomorphisms
$M\to N$ and
$N\to M$ implies
$M\simeq N$. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an
$R$-module
$M$, the class
$\sigma M$ of all
$M$-subgenerated modules is mono-correct if and only if
$M$ is semisimple, and the class of all weakly
$M$-injective modules is mono-correct if and only if
$M$ is locally noetherian. Applying this to the functor ring of
$R$-Mod provides a new proof that
$R$ is left pure semisimple if and only if
$R$-Mod is pure-mono-correct. Furthermore, the class of pure-injective
$R$-modules is always pure-mono-correct, and it is mono-correct if and only if
$R$ is von Neumann regular. The dual notion
epi-correctness is also considered and it is shown that a ring
$R$ is left perfect if and only if the class of all flat
$R$-modules is
epi-correct. At the end some open problems are stated.
Ключевые слова:
Cantor-Bernstein Theorem, correct classes, homological classification of rings.
MSC: 16D70,
16P40,
16D60 Поступила в редакцию: 12.06.2004
Исправленный вариант: 15.12.2004
Язык публикации: английский