RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2010, том 10, выпуск 1, страницы 18–41 (Mi adm37)

RESEARCH ARTICLE

On the existence of complements in a group to some abelian normal subgroups

Martyn R. Dixona, Leonid A. Kurdachenkob, Javier Otalc

a Department of Mathematics, University of Alabama at Tuscaloosa, AL 35487-0350, U.S.A.
b Department of Algebra, National University of Dnepropetrovsk, Dnepropetrovsk 10, 49010, Ukraine
c Departamento de Matemáticas – IUMA, Universidad de Zaragoza, 50009 Zaragoza, SPAIN

Аннотация: A complement to a proper normal subgroup $H$ of a group $G$ is a subgroup $K$ such that $G=HK$ and $H\cap K=\langle 1\rangle$. Equivalently it is said that $G$ splits over $H$. In this paper we develop a theory that we call hierarchy of centralizers to obtain sufficient conditions for a group to split over a certain abelian subgroup. We apply these results to obtain an entire group-theoretical wide extension of an important result due to D. J. S. Robinson formerly shown by cohomological methods.

Ключевые слова: Complement, splitting theorem, hierarchy of centralizers, hyperfinite group, socle of a group, socular series, section rank, $0$-rank.

MSC: 20E22, 20E26, 20F50

Поступила в редакцию: 02.11.2010
Исправленный вариант: 02.11.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024