Аннотация:
Let $R$ be a local ring with nonzero Jacobson radical.
We study monomial matrices over $R$ of the form
$$
\left(
\begin{smallmatrix}
0&\ldots&0&t^{s_n}\\
t^{s_1}&\ldots&0&0\\
\vdots&\ddots&\vdots&\vdots\\
0&\ldots&t^{s_{n-1}}&0\\
\end{smallmatrix}
\right),
$$
and give a criterion for such matrices to be reducible when $n\leq 6$, $s_1\ldots,s_n\in\{0,1\}$
and the radical is a principal ideal with generator $t$.
We also show that the criterion does not hold for $n=7$.
Ключевые слова:irreducible matrix, similarity, local ring, Jacobson radical.