Эта публикация цитируется в
10 статьях
RESEARCH ARTICLE
Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C#
A. Polak,
D. Simson Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Аннотация:
We present combinatorial algorithms constructing loop-free
$P$-critical edge-bipartite (signed) graphs
$\Delta'$, with
$n\geq 3$ vertices, from pairs
$(\Delta , w)$, with
$\Delta $ a positive edge-bipartite graph having
$n-1$ vertices and
$w$ a sincere root of
$\Delta $, up to an action $*:\mathcal{U} \mathcal{B} igr_n \times {\rm O}(n,\mathbb{Z}) \to \mathcal{U}\mathcal{B} igr_n$ of the orthogonal group
${\rm O}(n,\mathbb{Z})$ on the set
$\mathcal{U} \mathcal{B} igr_n$ of loop-free edge-bipartite graphs, with
$n\geq 3$ vertices. Here
$\mathbb{Z}$ is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in
$\mathcal{U} \mathcal{B} igr_n$ and for computing the
${\rm O}(n, \mathbb{Z})$-orbits of
$P$-critical graphs
$\Delta$ in
$\mathcal{U} \mathcal{B} igr_n$ as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute
$P$-critical graphs in
$\mathcal{U} \mathcal{B} igr_n$ and connected positive graphs in
$\mathcal{U} \mathcal{B} igr_n$, together with their Coxeter polynomials, reduced Coxeter numbers, and the
${\rm O}(n, \mathbb{Z})$-orbits, for
$n\leq 10$. The computational results are presented in tables of Section 5.
Ключевые слова:
edge-bipartite graph, unit quadratic form,
$P$-critical edge-bipartite graph, Gram matrix, sincere root, orthogonal group, algorithm, Coxeter polynomial, Euclidean diagram.
MSC: 15A63,
11Y16,
68W30,
05E10 16G20,
20B40,
15A21 Поступила в редакцию: 26.07.2013
Исправленный вариант: 26.07.2013
Язык публикации: английский