Эта публикация цитируется в
21 статьях
RESEARCH ARTICLE
Algorithmic computation of principal posets using Maple and Python
Marcin Gąsiorek,
Daniel Simson,
Katarzyna Zając Faculty of Mathematics and Computer, Science, Nicolaus Copernicus University, 87-100 Toruń, Poland
Аннотация:
We present symbolic and numerical algorithms for a computer search in the Coxeter
spectral classification problems. One of the main aims of the paper is to study finite posets
$I$ that are principal, i.e., the rational symmetric Gram matrix
$G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M}_I(\mathbb{Q})$
of
$I$ is positive semi-definite of corank one, where
$C_I\in\mathbb{M}_I(\mathbb{Z})$ is the incidence matrix of
$I$.
With any such a connected poset
$I$, we associate a simply laced Euclidean diagram
$DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$, the Coxeter matrix
${\rm Cox}_I:= - C_I\cdot C^{-tr}_I$, its complex Coxeter spectrum
${\mathbf{specc}}_I$, and a reduced
Coxeter number
$\check {\mathbf{c}}_I$.
One of our aims is to show that the spectrum
${\mathbf{specc}}_I$ of any such a poset
$I$
determines the incidence matrix
$C_I$ (hence the poset
$I$) uniquely, up to a
$\mathbb{Z}$-congruence.
By computer calculations, we find a complete list of principal one-peak posets
$I$
(i.e.,
$I$ has a unique maximal element) of cardinality
$\leq 15$, together with
${\mathbf{specc}}_I$,
$\check {\mathbf{c}}_I$, the incidence defect
$\partial_I:\mathbb{Z}^I \to\mathbb{Z}$, and
the Coxeter-Euclidean type
$DI$. In case when $DI \in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n , \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$ and
$n:=|I|$ is
relatively small, we show that given such a principal poset
$I$, the incidence
matrix
$ C_I$ is
$\mathbb{Z}$-congruent with the non-symmetric Gram matrix
$ \check
G_{DI}$ of
$DI$,
${\mathbf{specc}}_I = {\mathbf{specc}}_{DI}$ and
$\check {\mathbf{c}}_I= \check {\mathbf{c}}_{DI}$.
Moreover, given a pair of principal posets
$I$ and
$J$, with
$|I|= |J| \leq 15$, the matrices
$C_I$ and
$C_J$
are
$\mathbb{Z}$-congruent if and only if
${\mathbf{specc}}_I= {\mathbf{specc}}_J$.
Ключевые слова:
principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix, Coxeter polynomial, Coxeter spectrum.
MSC: 06A11,
15A63,
68R05,
68W30 Поступила в редакцию: 08.08.2013
Исправленный вариант: 08.08.2013
Язык публикации: английский