Эта публикация цитируется в
3 статьях
RESEARCH ARTICLE
On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images
Oleg Gutik,
Inna Pozdnyakova Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
Аннотация:
We study the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ of monotone injective partial selfmaps of the set of
$L_n\times_{\operatorname{lex}}\mathbb{Z}$ having co-finite domain and image, where
$L_n\times_{\operatorname{lex}}\mathbb{Z}$ is the lexicographic product of
$n$-elements chain and the set of integers with the usual order. We show that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is bisimple and establish its projective congruences. We prove that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is finitely generated, and for
$n=1$ every automorphism of $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is inner and show that in the case
$n\geqslant 2$ the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ has non-inner automorphisms. Also we show that every Baire topology
$\tau$ on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$
such that $(\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}}),\tau)$ is
a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$, and prove that the discrete semigroup
$\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ cannot be embedded
into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup
$S$ is an ideal in
$S$.
Ключевые слова:
topological semigroup, semitopological semigroup, semigroup of bijective partial transformations, symmetric inverse semigroup, congruence, ideal, automorphism, homomorphism, Baire space, semigroup topologization, embedding.
MSC: Primary
20M18,
20M20; Secondary
20M05,
20M15,
22A15,
54C25,
54D40,
54E52,
54H10 Поступила в редакцию: 07.12.2013
Исправленный вариант: 27.01.2014
Язык публикации: английский