RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 19, выпуск 2, страницы 162–171 (Mi adm514)

RESEARCH ARTICLE

On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations

Paula Catarinoa, Peter M. Higginsb, Inessa Levic

a Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro
b Department of Mathematical Sciences, University of Essex
c Department of Mathematics, Columbus State University

Аннотация: It is well-known [16] that the semigroup $\mathcal{T}_n$ of all total transformations of a given $n$-element set $X_n$ is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain $X_n$ is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of $X_n$ is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain $X_n$ are covered by their inverse subsemigroups precisely when $n \leq 3$.

Ключевые слова: semigroup, semilattice, inverse subsemigroup, strong inverse, transformation, order-preserving transformation, orientation-preserving transformation, orientation-reversing transformation.

MSC: 20M20, 05C25

Поступила в редакцию: 04.06.2014
Исправленный вариант: 04.08.2014

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024