RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 20, выпуск 2, страницы 325–329 (Mi adm547)

RESEARCH ARTICLE

A morphic ring of neat range one

O. Pihura, B. Zabavsky

Department of Mechanics and Mathematics, Ivan Franko National University of L'viv

Аннотация: We show that a commutative ring $R$ has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring $R$ has a neat range one if and only if for any elements $a, b \in R$ such that $aR=bR$ there exist neat elements $s, t \in R$ such that $bs=c$, $ct=b$. Examples of morphic rings of neat range one are given.

Ключевые слова: Bezout ring, neat ring, clear ring, elementary divisor ring, stable range one, neat range one.

MSC: 13F99

Поступила в редакцию: 07.11.2014
Исправленный вариант: 20.01.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024