RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2016, том 21, выпуск 1, страницы 24–50 (Mi adm552)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Normally $\zeta$-reversible profinite groups

Leone Cimetta, Andrea Lucchini

Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Аннотация: We examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally $\zeta$-reversible. We conjecture that these groups are pronilpotent and we prove this conjecture if $G$ is a normally $\zeta$-reversible satisfying one of the following properties: $G$ is prosoluble, $G$ is perfect, all the nonabelian composition factors of $G$ are alternating groups.

Ключевые слова: profinite groups, Dirichlet series.

MSC: 20E07

Поступила в редакцию: 31.12.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024