RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 23, выпуск 1, страницы 62–137 (Mi adm597)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories

Manuel Saorín

Departemento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100 Espinardo, Murcia, Spain

Аннотация: We develop the theory $\mathrm{dg}$ algebras with enough idempotents and their $\mathrm{dg}$ modules and show their equivalence with that of small $\mathrm{dg}$ categories and their $\mathrm{dg}$ modules. We introduce the concept of $\mathrm{dg}$ adjunction and show that the classical covariant tensor-Hom and contravariant Hom-Hom adjunctions of modules over associative unital algebras are extended as $\mathrm{dg}$ adjunctions between categories of $\mathrm{dg}$ bimodules. The corresponding adjunctions of the associated triangulated functors are studied, and we investigate when they are one-sided parts of bifunctors which are triangulated on both variables. We finally show that, for a $\mathrm{dg}$ algebra with enough idempotents, the perfect left and right derived categories are dual to each other.

Ключевые слова: $\mathrm{dg}$ algebra, $\mathrm{dg}$ module, $\mathrm{dg}$ category, $\mathrm{dg}$ functor, $\mathrm{dg}$ adjunction, homotopy category, derived category, derived functor.

MSC: Primary 16E45, 18E30; Secondary 16E35, 18E25

Поступила в редакцию: 14.12.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024