RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 13, выпуск 1, страницы 52–58 (Mi adm65)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

Mohsen Ghasemi

Department of Mathematics, Urmia University, Urmia 57135, Iran

Аннотация: A Cayley graph $X=\mathrm{Cay}(G,S)$ is called normal for $G$ if the right regular representation $R(G)$ of $G$ is normal in the full automorphism group $\mathrm{Aut}(X)$ of $X$. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group $G$ are normal when $(|G|, 2)=(|G|,3)=1$, and $X$ is not isomorphic to either Cay$(G,S)$, where $|G|=5^n$, and $|\mathrm{Aut}(X)|=2^m.3.5^n$, where $m \in \{2,3\}$ and $n\geq 3$, or Cay$(G,S)$ where $|G|=5q^n$ ($q$ is prime) and $|\mathrm{Aut}(X)|=2^m.3.5.q^n$, where $q\geq 7$, $m \in \{2,3\}$ and $n\geq 1$.

Ключевые слова: Cayley graph, normal Cayley graph, minimal non-abelian group.

MSC: 05C25, 20B25

Поступила в редакцию: 13.10.2011
Исправленный вариант: 27.11.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024