RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 25, выпуск 2, страницы 165–176 (Mi adm652)

RESEARCH ARTICLE

Enumeration of strong dichotomy patterns

Octavio A. Agustín-Aquino

Universidad Tecnológica de la Mixteca, Instituto de Física y Matemáticas, Carretera a Acatlima Km. 2.5, Huajuapan de León, Oaxaca, México, C.P. 69000

Аннотация: We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of $\mathbb{Z}_{2k}$ with respect to the action of $\operatorname{Aff}(\mathbb{Z}_{2k})$ and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.

Ключевые слова: strong dichotomy pattern, Pólya-Redfield theory, cyclic sieving.

MSC: 00A65, 05E18

Поступила в редакцию: 03.02.2016
Исправленный вариант: 01.02.2018

Язык публикации: английский



© МИАН, 2025