RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 25, выпуск 2, страницы 177–187 (Mi adm653)

RESEARCH ARTICLE

On certain homological invariant and its relation with Poincaré duality pairs

Maria Gorete Carreira Andradea, Amanda Buosi Gazonb, Amanda Ferreira de Limab

a Universidade Estadual Paulista, Departamento de Matemática, Rua Cristovão Colombo, 2265, 15054-000, São José do Rio Preto - SP, Brazil
b Universidade Federal de São Carlos, Departamento de Estatística, Rodovia Washington Luíis, km 235, 13565-905, São Carlos - SP, Brazil

Аннотация: Let $G$ be a group, $\mathcal{S} = \{ S_i, i \in I\}$ a non empty family of (not necessarily distinct) subgroups of infinite index in $G$ and $M$ a $\mathbb{Z}_2 G$-module. In [4] the authors defined a homological invariant $E_*(G, \mathcal{S}, M),$ which is “dual” to the cohomological invariant $E(G, \mathcal{S}, M)$, defined in [1]. In this paper we present a more general treatment of the invariant $E_*(G, \mathcal{S}, M)$ obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant $E(G, \mathcal{S}, M)$. We analyze, through the invariant $E_{*}(G, S,M)$, properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.

Ключевые слова: (co)homology of groups, duality groups, duality pairs, homological invariant.

MSC: 20J05, 20J06, 57P10

Поступила в редакцию: 19.08.2016
Исправленный вариант: 23.06.2017

Язык публикации: английский



© МИАН, 2024