RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 25, выпуск 2, страницы 200–214 (Mi adm655)

RESEARCH ARTICLE

On dual Rickart modules and weak dual Rickart modules

Derya Keskin Tütüncüa, Nil Orhan Ertaşb, Rachid Tribakc

a Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
b Department of Mathematics, Karabük University, 78050 Karabük, Turkey
c Centre Régional des Métiers de l'Education et de la Formation, Avenue My Abdelaziz, Souani, B.P.:3117, Tangier 90000, Morocco

Аннотация: Let $R$ be a ring. A right $R$-module $M$ is called $\mathrm{d}$-Rickart if for every endomorphism $\varphi$ of $M$, $\varphi(M)$ is a direct summand of $M$ and it is called $\mathrm{wd}$-Rickart if for every nonzero endomorphism $\varphi$ of $M$, $\varphi(M)$ contains a nonzero direct summand of $M$. We begin with some basic properties of $\mathrm{(w)d}$-Rickart modules. Then we study direct sums of $\mathrm{(w)d}$-Rickart modules and the class of rings for which every finitely generated module is $\mathrm{(w)d}$-Rickart. We conclude by some structure results.

Ключевые слова: dual Rickart modules, weak dual Rickart modules, weak Rickart rings, V-rings.

MSC: Primary 16D10; Secondary 16D80

Поступила в редакцию: 03.03.2016

Язык публикации: английский



© МИАН, 2024