RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 26, выпуск 1, страницы 1–7 (Mi adm665)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Unimodality polynomials and generalized Pascal triangles

Moussa Ahmiaa, Hacène Belbachirb

a University of Mohamed Seddik Ben Yahia, Department of Mathematics, RECITS Laboratory, BP 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
b University of Sciences and Technology Houari Boumediene, Faculty of Mathematics, RECITS Laboratory, BP 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria

Аннотация: In this paper, we show that if $P(x)=\sum_{k=0}^{m}a_{k}x^{k}$ is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of $P(x^{s}+\cdots +x+1)$ is unimodal for each integer $s\geq 1$. This paper is an extension of Boros and Moll's result “A criterion for unimodality”, who proved that the polynomial $P(x+1)$ is unimodal.

Ключевые слова: unimodality, log-concavity, ordinary multinomials, Pascal triangle.

MSC: 15A04, 11B65, 05A19, 52A37

Поступила в редакцию: 04.04.2016
Исправленный вариант: 18.05.2016

Язык публикации: английский



© МИАН, 2024